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ABSTRACT

Since modern database applications increasingly need to
deal with dirty data due to a variety of reasons (e.g., data
entry errors, heterogeneous formats, and ambiguous terms),
considerable recent efforts have focused on the (record)
linkage problem to determine if two entities represented
as relational records are approximately the same or not. In
this paper, we propose a novel idea of using the popular
gene sequence alignment algorithm in Biology — BLAST.
Our proposal, termed as the BLASTed linkage, is based on
the observations that: (1) both problems are variants of ap-
proximate pattern matching, (2) BLAST provides the sta-
tistical guarantee of search results in a scalable manner — a
greatly lacking feature in many linkage solutions, and (3) by
transforming the record linkage problem into the gene se-
quence alignment problem, one can leverage on a wealth of
advanced algorithms, implementations, and tools that have
been actively developed for BLAST during the last decade.
In translating English alphabets to DNA sequences of A, C,
G, and T, we study four variations: (1) default — each alpha-
bet is mapped to nucleotides under 1, 2, and 4-bit coding
schemes, (2) weighted — tokens are elongated or shortened
proportional to their importance, making important tokens
longer in the resultant DNA sequences, (3) hybrid — each
token’s lexical meaning as well as its importance are consid-
ered at the same time during translation, and (4) multi-bit —
tokens are selected for any of 1, 2, and 4-bit coding schemes
based on the cumulative distribution functions of their im-
portance. The efficacy of our proposed BLASTed linkage
schemes are experimentally validated using both real and
synthetic data sets.

1. INTRODUCTION

Poor quality data is prevalent in databases due to a va-
riety of reasons, including transcription errors, data entry
mistakes, lack of standards for recording database fields,
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etc. To fix such errors, considerable recent work has fo-
cused on the (record) linkage problem’, i.c., determine
whether or not two entities represented as relational records
are approximately the same. The linkage problem frequently
occurs in data applications (e.g., digital libraries, search en-
gines, customer relationship management) and gets exacer-
bated when data are integrated from heterogeneous sources.
For instance, a customer address table in a data warehouse
may contain multiple address records that are all from the
same residence, and thus need to be consolidated. For an-
other example, imagine integrating two digital libraries, say
DBLP and CiteSeer. Since citations in two systems tend to
have different formats, identifying all matching pairs is not
always straightforward.

The linkage problem has been extensively studied in var-
ious disciplines. By and large, contemporary approaches
have mostly focused on how to identify similar records “ac-
curately” by designing new methods or models in a par-
ticular situation. However, often, newly-developed linkage
solutions are hard to apply to data sets of different scenar-
ios, let alone using additional tools to visualize or analyze
the results further. One way to approach the problem is to
develop a suite of linkage algorithms and tools for generic
usage so that the developed linkage solutions can be used
in a variety of situations. Another way is to extend an ex-
isting generic solution to solve the linkage problem so that
one can leverage on the development of the generic solution
and its user base. In this paper, we take the latter approach
and aim at solving the linkage problem by applying one of
such popular existing solutions drawn from Bioinformatics,
called BLAST (Basic Local Alignment Search Tool) [1].

The BLAST, developed in 1990, is one of the most pop-
ular (and best cited) algorithms for aligning biological se-
quence information such as nucleotides of DNA sequences
and amino acid sequences of proteins. In its essence, given
a query sequence ¢, BLAST finds top-k most similar se-
quences above a threshold from a database of sequences D
using approximation? heuristics based on Smith-Waterman
algorithm [20]. Our decision to use BLAST for the linkage
problem is based on the observations that: (1) Both prob-
lems are variants of approximate pattern matching. That is,
comparing two address records of “John Doe, 110 E. Foster

!The record linkage problem is also known as other names
such as merge-purge 9], de-duplication [18], or entity resolu-
tion [19] problem. Throughout the paper, to be consistent,
we will use the linkage problem to refer to all these problems.
2Tt is reported that BLAST is able to produce results that
are slightly less accurate than what Smith-Waterman algo-
rithm [20] would generate but over 50 times faster [1].



Notation Description
Qr, Qs a query record and sequence
dy, ds a duplicate record and sequence

D, Dy a database of records and sequences
t1, ta .. tokens

tf term frequency
tf/idf | term freq./inverse document freq.

Table 1: Notations used.

Ave. State College, PA, USA” and “Dr. J. E. Doe, 110 East
Foster Franklin Avenue, University Park, PA 16802” in the
linkage problem is closely related to finding an alignment
between the sequences ATATCG and ATTAGC using BLAST;
(2) The alignment results from BLAST provide a robust
similarity measure of S-score as well as a sound reliability
measure of E-value®. Such a statistical guarantee has been
greatly lacking in existing linkage solutions. Furthermore,
BLAST is known for its fast running time and ability to han-
dle a large amount of sequence data; and (3) BLAST has a
wealth of advanced algorithms (e.g., nucleotide-nucleotide,
protein-protein, and position-specific version), implementa-
tions (e.g., NCBI BLAST, FPGA-based BioBoost BLAST,
and open source version), and tools (e.g., KoriBLAST for vi-
sualization and Parallel BLAST for parallel processing [17])
to leverage on. Therefore, if one can successfully transform
the linkage problem to the gene sequence alignment prob-
lem, one can have an immediate access to a vast number of
application software to use.

In the investigation of BLAST for the linkage problem,
in particular, we aim to have the following desiderata to
maximize the impact of study: (1) The kernel of BLAST al-
gorithm and implementation should not be changed to make
existing tools remained as useful. Instead, our proposal sits
atop BLAST algorithm and manipulates query and database
sequences; and (2) The proposed scheme should be able to
identify matching records fast as well as accurately. That
is, both accuracy and speed of the solution should be the
evaluation metrics.

Our contributions are as follows:

e To the best of our knowledge, this is the first attempt
to solve the linkage problem using the BLAST technol-
ogy. We formally introduce the linkage problem and
propose a framework to show how to apply BLAST
algorithm.

e We propose and evaluate four different BLAST based
linkage solutions to translate string data into DNA
sequences while considering the relative importance of
tokens in the string data.

e We compare the proposed BLAST based schemes against

popular approximate pattern matching schemes such
as Jaro, Jaccard, and Soft TFIDF and report promising
results of our proposal in both speed and accuracy.

3E-value is the probability indicating that the S score of
the current sequence could be due to by chance using the
given database. For instance, an E-value less than e ° of
an alignment means that the alignment is very unlikely to
occur by chance — thus a good match.
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Figure 1: Overview of the BLASTed Linkage.

2. OVERVIEW OF PROBLEM AND SOLU-
TION

Throughout the paper, we use notations in Table 1.

Problem Overview. The linkage problem can be mod-
eled as a selection problem (i.e., select top-k similar records)
as well as a threshold problem (i.e., find all similar records
above a threshold). For illustration purpose, we briefly de-
scribe the selection version of the linkage problem as follows.
Imagine that given a query record ¢,, there are k true dupli-
cates, di, ..., di, in the database of records D,. Then, the
goal of record linkage is to obtain the true duplicates from
the retrieved top-k records. In the best scenario, if all k
true duplicates are retrieved, then we get the precision and
recall of 1.0. Note that in this paper, we adopt both the
selection approach and the threshold approach for further
experimental analysis.

Given a set of query records @, and a database of records
D,, a naive nested-loop style algorithm with quadratic run-
ning time to find all duplicate records is:

for each record r € Q,
for each record s; € D,
compute dist(r, s;);
return {s1, ..., sx} with the lowest dist(r, s;);

Note that what we study in this paper is not the algorith-
mic improvement of the linkage problem nor the study of
dist() function therein. Therefore, such an optimization or
modeling issue is not further discussed in the paper.

Solution Overview. The basic framework of our ap-
proach, termed as the “BLASTed linkage” or “BL” in short,
is illustrated in Figure 1. All strings in database D are
first translated to DNA sequences by rewriting each En-
glish alphabet character to pre-assigned one, two, or four
nucleotides under 1, 2, or 4-bit coding scheme, respectively.
For instance, the alphabet “A” is re-written to nucleotides
of T, GT, or AAAC under 1, 2, or 4-bit coding scheme, respec-
tively. Then, the query sequence ¢ is also translated in a
similar manner. Finally, BLAST is invoked to find similar
sequences to q from D. In addition to this default BLASTed
linkage technique, we also propose three other variations de-
pending on how we “translate” strings to DNA sequences —



Step 1. Finding hits Inverted Index of Hits BLAST database

Query: .. .TT|GAGCACTGTGA| AA. ..

Step 2. Ungapped extension

GAGCACTGTGA | TGGAGCACTGTGACA. .

Query: ... TT GAGCACTGTGA AA ...
— —
Target: ... TG GAGCACTGTGA GA ...

Step 3. Gapped extension

Query: TTC--TTGAFCACTGTFALLGTACAAT GEAGCACTGT
PO 0ttt | e e
Target: TTCAQTGGAGCACTGTGACA---CGOTGG--CACTGG - - 9aps

Figure 2: Three steps of BLAST.

weighted, hybrid, and multi-bit BLASTed linkage.

e In the default BLASTed linkage (in Section 3.1), each
alphabet character in record strings is translated to
pre-assigned number of nucleotides.

In the weighted BLASTed linkage (in Section 3.2), each
token in record strings is either elongated or shortened,
proportional to their associated weights, to make im-
portant tokens longer in DNA sequences.

In the hybrid BLASTed linkage (in Section 3.3), each
token’s lexical meaning is incorporated into the trans-

lation in addition to the importance such as their weights

or ranks.

In the multi-bit BLASTed linkage (in Section 3.4), each
token is assigned to any of 1, 2 or 4-bit coding schemes
based on the cumulative distribution functions of their
importance.

3. MAIN PROPOSAL: BLASTed Linkage

The original BLAST algorithm performs three basic steps
to align similar sequences. These three steps are illustrated
in the format of DNA sequences in Figure 2. Given a query
sequence ¢ and a database of sequences D, consider the can-
didate sequence ¢ (¢ € D). Then,

1. FExzact Match: BLAST first searches all sequences
from D that share “hits” with ¢, where hits are the exactly
matching continuous letters of nucleotides between ¢ and q.
By default, in BLAST, the size of a hit for DNA sequence
is 11 nucleotides.

2. Ungapped Extension: In the second step, if ¢ has at
least two hits in close distance, BLAST extends the two hits
without gaps. During the extension, BLAST increases the
score for matching pairs and decreases it for mismatching
pairs. If the score drops below a certain threshold, then
the process stops and the final result becomes the High-
scoring Segment Pairs (HSP). The box in step 3 of Figure 2
represents HSP from the ungapped extension step.

3. Gapped Extension: Last, BLAST extends the HSP
(with matching score above the threshold) with gaps as long
as the final score does not drop below a threshold, which is
larger than the threshold of ungapped extension.

At each step, BLAST can eliminate some candidate se-
quences with insufficient matching scores below the thresh-
olds to reduce the cost of expensive dynamic programming.
That is, the thresholds for ungapped and gapped extension
help BLAST avoid comparing the entire sequence.

l Letter vs. Nucleotides (4-bit)
A | AAAC B | AAAG C | AAAT | D | AACC
E | AACG F | AACT || G | AAGC H | AAGG
I AAGT J | AATC || K | AATG || L | AATT
M | ACAC || N | ACAG || O | ACAT || P

| Letter vs. Nucleotides (1-bit/2-bit) ‘
A |T/GT || B|A/AG || C | cCc/CA || D | T/GC
E | A/AA | F | c/CcC || G| T/GG || H | G/CT
1 G/GA J | c/cq || K| A/AG || L | C/AT
M |T/GT || N | A/JAA || O | T/GG || P

Table 2: Conversion tables. (Partial)

The key contribution of the BLASTed linkage is to enable
BLAST to do the “linkage” of query and database records.
To enable this, one needs to translate query and database
records into DNA sequences of A, C, G, and T. For this trans-
lation, we study four variations below.

3.1 Default BLASTed Linkage

In the default BLASTed linkage, each alphabet letter in
record strings is translated to pre-assigned number of one,
two, or four nucleotides depending on 1, 2, or 4-bit coding
schemes, respectively. In this paper, we used three different
coding schemes as follows:

4-bit scheme: An alphabet letter is translated to four
nucleotides, as shown in Table 2 (top). Note that the assign-
ment of four nucleotides to an alphabet is done such that
the assigned nucleotides become “prefix-free.” A prefix-free
code such as Huffman code is a code where no code word is
a prefix of any other codes. For instance, a code set {0, 1,
01} is not prefix-free since “0” is the prefix of “01”, but a
code set {000, 010, 111} is. We use 4-bit coding of Table 2
(top) borrowed from [13]. However, note that any other
prefix-free assignment would work equally. Using 4-bit cod-
ing, note also that after the translation, DNA sequences are
always four times longer than original English strings. In
the translation, ignoring upper/lower cases, we consider 37
(=26 + 10 + 1) cases — i.e., 26 cases for 26 English alpha-
bets, 10 cases for 10 numbers (e.g., 0 to 9), and one case
for all special characters (e.g., @, #, $). we used the 4-bit
scheme, by default.

1-bit/2-bit schemes: Our eventual goal in this transla-
tion is not to have good representation of nucleotides, rather
to translate two similar (dissimilar) records to two similar
(dissimilar) DNA sequences so that both can be aligned cor-
rectly by BLAST. That is, whether “Fatabase” is translated
to AACTAAACACGGAAACAAAGAAACACGCAACG in 4-bit coding or
CTTTATGA in 1-bit coding is not important as long as both
DNA sequences can be aligned well with DNA sequences for
“Database” if we use BLAST to distinguish them. Based
on this observation, we also propose to use one or two nu-
cleotide(s) to represent each alphabet letter. For example,
we can group 37 cases into 4 groups, and assign one of A,
C, G, and T to each group. Similarly, we can also group 37
cases into 16 groups to use two nucleotides per group. This
coding scheme is shown in Table 2 (bottom).

The actual assignment of 1-bit or 2-bit nucleotides letters
to each group is done randomly since errors were artificially
introduced in the experimentation. However, one can ex-
ploit further heuristic features in the assignment. For in-



(a) Token | Rank Bit string (b) Bit string: 1100110
Lowest
} d 0 0
weight |2 i(])-" -'G—
of 1 1 -
Translate 00— A
in 2 10 01— C
11— T
the 3 11 10—>G
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Figure 3: The sliding window coding scheme in the
weighted BLASTed linkage: (a) tokens are sorted
by their weights, (b) bit string is translated to DNA
sequence by the sliding window of size 2.

stance, alphabet letters in the neighborhood on keyboards
can be assigned to the same group. Finally, note that com-
pared to the 4-bit coding scheme which is a lossless scheme,
1-bit and 2-bit schemes are lossy — i.e., we are unable to
translate translated strings back to the original ones. De-
spite their lossy translation, we will show that 1-bit and
2-bit coding schemes can achieve acceptable accuracy with
noticeable speed-up.

3.2 Weighted BLASTed Linkage

By the coding schemes of default BLASTed linkage, longer
English letters will always have longer DNA sequences, re-
gardless of bit schemes. For instance, when an article title
“Improving RNA ...” is translated, the word “Improving”
will have 36 nucleotides AAGTACACACCCACCTACATACTCAAGTACA
GAAGC while the second word “RNA” has 12 nucleotides
ACCTACAGAAAC under 4-bit scheme. Therefore, if there is an-
other title such as “Improving Stem Cell ...” | then BLAST is
likely to find this title as a similar match since 36 nucleotides
between two sequences (corresponding to “Improving”) are
identical. However, in both titles, the other words such as
“RNA” or “Stem Cell” carry more important meaning and
thus it is most likely users’ intention to find articles with ti-
tles having either “RNA” or “Stem Cell”, not “Improving.”

To capture this intuition, in the weighted BLASTed link-
age, each word token t of a record string s from a database
of sequences D is associated with an importance weight w
using the tf-idf weight (term frequency-inverse document
frequency) of the traditional weighting scheme in Informa-
tion Retrieval. This tf-idf weight is a statistical measure to
estimate how important a word token ¢ in the string s is
within a database D such that it increases proportionally
to the number of times ¢ occurs in s but is offset by its fre-
quency in D. For instance, for a record string “Improving
RNA ..., the token “Improving” would have a lower tf-idf
weight than what the token “RNA” would have, assuming
that the token “Improving” occurs frequently among entire
corpus of D.

Given tf-idf weight, each token can be converted to corre-
sponding bits using the sliding window coding, as illustrated
in Figure 3. The details are as follows:

1. Word tokens are sorted in ascending order according to
their tf-idf weights — from the least important to the most
important token. For a token ¢ with the rank r (starting
from 0) in this order, then, a binary string corresponding
for the rank r is used as the encoded string for the token ¢.
For instance, the third lowest rank word “in” in Figure 3(a)

has the rank of #2 (since the rank starts from 0), and is
thus converted to its corresponding binary representation
of 11 (i.e., 11 = “third lowest”). In addition to this simple
ranking-based encoding method, we also tried more sophisti-
cated method using equi-distance histograms. For instance,
using 1,000 equi-distance bins (i.e., bin #1 for weights in
[0.000, 0.001), bin #2 for weights in [0.001, 0.002), etc.), all
tokens are assigned to appropriate bins with similar weights
(thus similar importance), and subsequently all tokens in
the same bin are encoded into the same binary string (i.e.,
0 for bin #0, 1 for bin #1, and 10 for bin #2, etc.)*.

2. Once a binary bit string representation for the token
t is ready, a sliding window w slides down the bit string,
one bit each time, and encodes bits within the window to
corresponding nucleotides. When |w|=2, the sliding window
can have four kinds of bit strings, {00, 01, 10, 11} (ignoring 0
and 1), which can be encoded to A, C, G, and T, respectively.
As shown in Figure 3(b), based on the binary bit string
1100110 for a particular token, six 2-bits of {11, 10, 00, 01,
11, 10} are generated in the sliding window, and six letter
nucleotides TGACTG become the final DNA sequence.

Note that since more important tokens with higher tf-
idf weights are encoded to longer bits, their final DNA se-
quences will be much longer as well. Therefore, when BLAST
aligns sequences, such elongated DNA sequences will play a
more significant role than they would in the default BLASTed
linkage.

One potential caveat of the rank based weighted BLASTed
linkage is that each unique token in the corpus D will have
unique DNA sequences assigned at the end. For instance,
when there are two tokens ¢1 (“Database”) and ¢, (“Fatabase”)
in D, since they may have different tf-idf weights, their cor-
responding ranks may be extremely different. In turn, this
will yield two completely different final DNA sequences al-
though the two tokens appear to be similar. To mitigate this
problem, we can first group tokens which must be consid-
ered as the same or similar word and assign the same DNA
sequence to each token group. In the experimentation, we
applied the popular Jaro-Winkler method to find all obvious
typos first.

3.3 Hybrid BLASTed Linkage

Compared to those in the default BLASTed linkage, the fi-
nal DNA sequences of tokens in the weighted BLASTed link-
age are completely determined by their importance weights.
To some extent, we become lost the lexical information of
tokens. In other words, there might exist such situation
that two tokens are completely different but they happen
to carry equal or close importance weights in the database.
For instance, let us consider a citation record such as “...pro-
ceedings of VLDB ...” and the other citation record such as
“...proceedings of SIGMOD ...”. The words “VLDB” and
the “SIGMOD ” may have close importance weights in the
database. Suppose the binary bit string representations for
“VLDB” and “SIGMOD” are 11000 and 11001, respectively.
When they are translated using the sliding window coding,
the final DNA sequences for “VLDB” and “SIGMOD” be-
come TGAA and TGAC, respectively. Obviously, this may re-
sult in a similar match between these two tokens although
they are completely different.

4In the experimentation, the histogram based scheme did
not show significant improvement over the simple rank based
method, and thus is not discussed any further.
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Figure 4: The coding scheme in the hybrid
BLASTed linkage: (a) importance weights are ap-
pended to the lexical information of tokens, (b)
comparison of token “VLDB” and “SIGMOD” us-
ing 2-bit as default coding and ranks as importance
weights in the hybrid BLASTed linkage.

Motivated by this intuition, in the hybrid BLASTed link-
age, we propose to incorporate the lexical information into
the translation in addition to the importance weights of to-
kens. For each token, we append the gene sequence gen-
erated from the importance weight to the end of the gene
sequence generated from the default coding scheme, as il-
lustrated in Figure 4(a). For the above example, using this
hybrid coding scheme with 2-bit as default coding and ranks
as importance weights, the final DNA sequences for “VLDB”
and “SIGMOD” become CTATGCAGTGAA and GAGAGGGTGGGCTG
AC, respectively. (Figure 4(b)). Accordingly, the probability
that BLAST finds these two tokens as a similar match is
greatly reduced.

The proposed hybrid BLASTed linkage also have some
advantage over the default BLASTed linkage. According to
the default coding, a longer token has a longer DNA se-
quence based on the lexical formation. If it is more im-
portant in the corpus, then its DNA sequence generated
from the importance weight is also longer. Therefore in the
hybrid BLASTed linkage, by combining the two DNA sub-
sequences, it would have even longer final DNA sequence for
BLAST to distinguish. However, if it is not important in
the corpus, then its DNA sequence based on the importance
weight is much shorter, which in turn offsets the length of
the DNA sequence generated from the default coding. Since
most English words have limited length but the rank of a
word in a very large database could be significantly high,
the hybrid BLASTed linkage can improve the precision of
pattern matching in BLAST without loss of lexical meaning
of English words.

In addition, the hybrid BLASTed linkage can mitigate
the synonym or typo problem which is mentioned at the
end of Section 3.2. Although the two tokens “Database”
and “Fatabase” have quite different tf-idf weights and hence
different gene sequences based on their ranks, their lexical
formations are quite similar. Therefore, the gene sequences
generated from the default coding can offset the difference
between their ranks. Overall, the final DNA sequences can
still be similar to reduce the chance for BLAST to find the
mis-match.

3.4 Multi-bit BLASTed Linkage

In the weighted BLASTed linkage, there exists such situ-
ation that two tokens have different tf-idf weights but they
have close ranks which in turn result in similar final DNA

sequences after translation. The hybrid BLASTed linkage,
to some extent, can mitigate this problem. However, the
combination of two component gene sequences may quickly
increase the length of the final DNA sequence for each to-
ken. Thus, we propose a multi-bit BLASTed linkage. The
main idea is to divide all the tokens into three groups based
on the actual values of tf-idf weights and then assign 1, 2
and 4-bit coding schemes to the three groups respectively
to ensure that more important tokens can be translated to
longer DNA sequences.

In this scheme, we regard different tokens in the corpus
as possible values of a discrete random variable X, i.e., X
can take on possible values {x1, x2,..., n} where n is total
# of tokens in the database. The weight of each token is
regarded as the probability of X at that particular value.
Note that if the weights are not normalized, i.e., the sum of
the weights are not equal to 1, we need to normalize these
weights first (e.g. by dividing each weight by the total sum
of weights). Hence, the normalized weights construct the
probability mass function(pmf) at x; for the discrete random
variable X. That is, the pmf at z; represents Prob(X = z;).
Without loss of generalization, we can re-arrange x; through
., based on the ascending order of pmf. Then we can obtain
the cumulative distribution function(cdf) for X. That is, the
cdf at x; is the sum of pmf at 1 through x;. Therefore, the
cdf at x; represents Prob(X < z;). Based on these values,
we can generate the pmf and cdf curves by connecting points
at each specific value of X.

The motivation of the multi-bit BLASTed linkage is that
we select two cutoff values C7 and Cs of X so that we can
assign 1-bit, 2-bit, and 4-bit coding to the tokens in these
three regions respectively (suppose Ci1 < C3). Basically
we will assign 4-bit coding to those more important tokens,
therefore those tokens would fall in the range [C3, z,] on the
cdf curve. There are a variety of potential criteria to select
the cutoff values. For instance, we can select C; as the 25th
percentile or the first quartile, and C5 as the 75th percentile
or the third quartile. This corresponds to the following se-
lection criterion: Prob(X < Cp) = Prob(X > C3) = 0.25.
More generally, given two pre-determined thresholds ¢1 and
¢2 for the lower and upper boundaries of the cumulative
distribution function, we can base on the following criterion
to select the cutoff values:

Prob(X < C1) = ¢1 and Prob(X > C2) = ¢2

The detailed steps for the proposed multi-bit BLASTed link-
age is shown in Algorithm 1.

4. EXPERIMENTAL VALIDATION
4.1 Set-up

Platform. All experiments presented here are done on
a machine with eight Dual-core 2400MHz AMD Opteron
processors and a total of 32G memory. For the evalua-
tion of BLASTed linkage schemes, we used the blastn of
BLAST v 2.2.13 (linux) from NCBI ftp site®. The blastn
is one of BLAST implementations for searching DNA se-
quence database. By default, BLAST filters out regions in
a query sequence that are frequent in database sequences
because those regions tend not to be biologically significant.
However, since those regions can be important for record

®ftp:/ /ftp.ncbi/nih.gov




[ Name [ Data [ Error | Domain [ # of records [ Max # of duplicates | # of queries [ # of targets |
cora real real citation 1,326 5 98 194
restaurant real real restaurant info. 864 2 111 111
celebrity real real celebrity address 2615 2 276 276
dblp real synthetic citation 5359 5 1,369 3,991
dbgen1 synthetic | synthetic mailing list 10,159 20 949 9,210
dbgen2 synthetic | synthetic mailing list 9,947 19 960 8,987
dbgen3 synthetic | synthetic mailing list 100,327 9 17,842 80,324
Table 3: Summary of data sets.
Algorithm 1; Multi-bit BLASTed linkage. i Brror TypTe _ [ P rozag‘hty |
- - - PO errors exis .
Input : A complete list of tf-idf weights for each Siyngle typo error 0.6
token, ¢1 and ¢2 as two thresholds of cdf Multiple typo error 0.4
Output: Two cutoff values C1 and C> to separate 1, 2, First name is dropped 0.3
and 4-bit coding schemes First name is abbreviated 0.7
1 normalize the weights so that Y weight[i] =1 ; N dl\éllledifn?eazleallosb?ésﬁigg 8§
2 sort tokens by normalized weights in the ascending T ot 0'9
Order- Syp(i eIt‘I‘OI’S €ex1s 09
o lgation* /- ingle typo error .
3 /*initialization*/; Multiple typo error 0.1
4 n < number of tokens; Venue information as a full name 0.4
5 ¢« 0, sum « 0; Pages and month information are dropped 0.5
6 /*ﬁnd Cl*/ Numeric information has a typo 0.2
7 while i < n and sum < do
s sum — sum + weig_hf[;] i i1 Table 4: Parameter settings used for the dbgeni
o endwhile ’ (above) and dblp (bottom) data set. Note that prob-
10 Cy1 — weight]il; abilities for different error types are independent
11 /*find Co*/ ’ each other.
12 j «—n—1, sum < 0;
i ] > <1- . . . . .
ii V‘thlzé ;Osggldjzn; 7h7¢}[ ] ?2(_(19 1 First, from the original cora data set with 1,296 citation
15 endwhile gl g =J records, we hand-selected 292 records of 98 citations since
16 Cs — weight]j]: some of the duplicates are incorrectly labeled and it is un-
2 )

17 return(Cy, Cb);

matching (e.g., year and venue in citation data sets), the
filter option of BLAST was set “off.” Besides, the rest of
the parameters were untouched.

blastp, BLAST implementation for protein sequences,
can use various substitution matrix and each matrix as-
signs different score for mismatches between different pairs
of amino acids. blastn uses simpler scoring scheme so that
the same score is assigned for mismatches between any two
nucleotides. Since this simple scoring scheme is fit better
for the comparison of English strings, we used blastn in
our experiments.

Even though some parameters to calculate e-value is de-
rived from the observation of biological sequences, e-value
basically indicates how significant an alignment is given length
of query and database sequences. Thus, e-values of an align-
ments between a query and each database sequence is con-
sidered as a measure of how each database sequence is rela-
tively similar to the query in our context.

Data Sets. Table 3 shows the summary of data sets used
in experiments. All three data sets, cora, restaurant, and
celebrity, are used as real data sets, containing real string
data and real errors. Both of cora and restaurant data
sets are downloaded from RIDDLE® data repository”

Shttp://www.cs.utexas.edu/users/ml/riddle/
"The celebrity data set was provided to us by Ned Porter at

realistic that duplicates of only a few entities take a large
portion of the entire database records like in the original
data set. Then, it is extended with 1,034 additional citation
records manually collected from the Web.

Second, the restaurant data set contains 864 records of
restaurant information, such as restaurant name, address,
telephone number, and food type that they serve (e.g., Ko-
rean, Chinese, Thai), collected from the Fodor’s and Zagat’s
restaurant guides. Each record in the data set has exactly
two duplicates.

Third, the original celebrity data set has 2764 records
of celebrities’ addresses with their names. The name of a
celebrity is used as a key to distinguish duplicates in the
data set. In case of the records with the same address for
different celebrity names, only one of them was kept. Among
the remaining 2615 records, 276 records are used as query
strings and each of them has an exactly one duplicate.

Next, a new citation data set dblp was generated using
real citation records from similar venues of DBLP. To inject
artificial errors, we randomly selected ten venues from simi-
lar research domains such as SIGMOD, PODS, and EDBT,
and again randomly selected citations published in those
venues. Given initial citations, we generated duplicates by
introducing typographical errors. For instance, single typo
error was generated by inserting a new character, replacing
a characters by different character, deleting a character, or
swapping two characters in a word. For numeric data fields
(e.g, journal volumes), we only use insertion and deletion.
The detailed parameter settings to generate errors are shown

US Census Bureau.



in Table 4.

Finally, using the data generation tool, DBGen [9], we
generated four synthetic data sets, dbgenl to dbgen3, con-
taining mailing list information with nine attributes such
as SSN, first name, middle name, last name, street num-
ber, and so on. DBGen permits us to control error rates in
records in detail. Both of dbgenl and dbgen2 have around
10,000 records with on average 20 duplicates per record. The
third data set, dbgen3, have more than 100,000 records for
us to study the scalability of the proposed BLASTed linkage
methods. For dbgeni, the probability to insert an error in
the SSN field is set to 0.1 and the probability to change an
address completely is 0.7. In dbgen2, the probability for a
token to have a typo (10% single vs. 90% multiple typos) in
person and street name fields is substantially increased to
0.8. The dbgen3 is similarly made, too.

Evaluation Metrics. To evaluate the efficiency and ef-
fectiveness of the proposed BLASTed linkage methods, we
mainly use two evaluation metrics — speed and accuracy.
In particular, to measure the speed of a method, we use
the running time excluding any pre-processing steps of se-
quence translation and database preparation. To measure
the accuracy, we use the average precision and recall. Sup-
pose that T denotes a set of true matching records and R
denotes a set of records retrieved by an algorithm. Then, we
have: precision:“:fng‘ and recall:‘R‘QlTl. Since the golden
solution set and # of true matching records are available
in all of the data sets, in the selection model with top-k
answers, we have R = T' = k, making both precision and
recall equivalent. Therefore, hereafter, we simply refer to
the accuracy as precision. In addition, we also simulate the
threshold model in evaluation by changing the k in top-k.
In such a case, we will present the precision-recall graph in
the traditional IR sense.

To compare with the performance of BLASTed linkage
proposals, we chose three string distance metrics popular in
conventional record linkage methods — Jaro, Jaccard, and
Soft TFIDF — from the Java-based open-source implemen-
tations of the SecondString package [5]. Recent work such
as [15] reported good performance of these methods in the
context of the citation matching problem. In addition, we
used JaroWinkler distance to detect obvious typos. Using
symbols like z, y for strings, T, for all tokens of z, C,
for all characters of z, CC,  for all characters in x com-
mon with y, and X, , for # of transpositions of charac-

ter in x relative to y, simple definitions of the four met-
|CCayl | |CCy. x|

rics are below: (1) Jaro(x,y) = 1 x ( ot e +
ICCoyl—Xcoy,,, oy, To N Tyl .
et e); (2) Jaccard(x,y) = [T (3)

TFIDF(x,y) = ZwETlﬂTy

= log(TFu,r, +1) % LogIDFw)

TS Goa (T -y +xTogTDFY (Y10
metrical for V(w,Ty)), where TF,, 1, is the frequency of
w in Ty, and IDF,, is the inverse of the fraction of names
in a corpus containing w; and (4) JaroWinkler(x,y) =
Jaro(z,y) + w x (1 — Jaro(z,y)), where L is the
longest common prefix of z and y. The Soft TFIDF method
is a minor improvement from the TFIDF method to use
“soft” token-matching idea [5].

4.2 Comparison with Baseline Approaches

Figure 5(a) shows a per-query execution time computed

V(w, Ty) XV (w,Ty), where V(w, Ty)

by dividing the total execution time per data set by the
number of queries in the data set. The BLASTed linkage
schemes dominated two baseline methods, Jaro and Soft-
TFIDF, in most of the data sets. Jaccard ran faster than
BLASTed linkage methods in cora, restaurant, and dblp
data sets.

The execution time of BLASTed linkage schemes is largely
affected by the lengths of sequences to be matched due to
the nonlinear nature of its matching algorithm while it is
not affected so much by the number of records in the tar-
get database as it uses inverted list to prune out unrelated
sequences before starting the alignment. Consequently, the
difference in the performance two baseline methods, which
are Jaro and Soft TFIDF, and BLASTed linkage methods is
much more significant in dblp and dbgen2, due to the sizes
of the data sets, than in cora and restaurant data sets.

However, the cost of token-based matching methods like
Jaccard increases quadratic to the number of records to
match. Figure 5(c) highlights the scalability of BLASTed
linkage method using the largest dbgen3 data set, compared
to Jaccard. As shown in figure 5(a), in general, Jaccard are
fast for small-sized data sets. However, for a substantially
large data set, thanks to the fast performance of underlying
BLAST algorithm and its optimized implementation, our
default BLASTed linkage with 4-bit scheme far outperforms
Jaccard by an order of magnitude (3.38 vs. 30.89 hours)
while maintaining higher precision (0.957 vs. 0.9).

Record linkage applications deal with large data sets and
the scalability of the matching algorithm is one of their pri-
mary concerns. We can easily address the problem using
BLAST and it is one of the key motivations of this work.

Figure 5(b) shows the precisions of the BLASTed linkage
schemes and the baseline approaches measured on the four
data sets. Graphs with other data sets show similar pattern
and are omitted. As shown in the figure, Jaccard and Soft-
TFIDF showed slightly better precision than the BLASTed
linkage schemes in cora and restaurant data sets. The
cora data set is particularly challenging because it includes
numbers of different citations sharing the same venue infor-
mation. If the venue of those citations is long, the alignment
algorithms can get mislead as the substantial parts of them
are matched. Also, there are some numbers of entries that
have the same title and authors but published in different
venues. It is virtually impossible to tell the identity of the
entries without looking at the actual contents of the papers.

Default BLASTed linkage showed an interesting result on
the restaurant data set. Compared to its results on the
other data set, its precision was very low. This is due to
the characteristics of record strings in the restaurant data
set. The records of restaurant data set have restaurant
name, address, telephone number, and food type. Among
the record fields, the address string takes a large portion
of entire record string. The restaurant data set include
information of restaurants in a few cities in U.S., and thus
many records are likely to share a portion of their addresses,
such as name of street, city, and area code and so on. If two
different restaurant records have large common substrings,
default BLASTed linkage can easily get mislead to find them
as a match.

On the other hand, weighted BLASTed linkage does not
suffer from this problem as much as default BLASTed link-
age does because it translates words to sequences of “differ-
ent” lengths according to their weights. Common words
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such as street names, cities and area codes will get low
weights and translated into short sequences, reducing their
impacts on alignment. As previously discussed, records of
cora data set also share common venue names in their record
strings. Therefore, precision of weighted BLASTed linkage
on the cora data set was also better than that of default
one. However, in the cora data set, the difference between
the two was insignificant because the venue information does
not take as much portion from the record as the address does
in the restaurant data set.

Meanwhile, on both of dblp and dbgen2 data sets, de-
fault BLASTed linkage showed the best performance. Es-
pecially, its performance on dblp is worth to note where we
introduced a high error rate. The precision of Jaro and Jac-
card, which showed good precisions on other data sets, de-
creased drastically to around 0.5. The precision of weighted
BLASTed linkage on dblp data set is very low because the
errors are introduced to tokens and weighted BLASTed link-
age takes the same tokens with typographical errors as dif-
ferent tokens.

4.3 Comparison of 1/2/4-bit Coding Schemes

Figure 6(a)-(b) presents the execution time and preci-
sion of the default BLASTed linkage with three different
bit-coding schemes. We compared the default 4-bit coding
to two lossy bit-coding schemes of 1-bit and 2-bit codings.
Tests performed on cora and dblp data sets are presented.
As can be seen in Figure 6(a), default BLASTed linkage with
4-bit coding is the slowest taking approximately 40 and 130
milliseconds on cora and dblp data sets, respectively. On
the other hand, the 1-bit coding scheme was the fastest tak-
ing only less than half of the time that 4-bit coding required.

As shown in the figure 6(b), all three coding schemes

(b) Precision

dblp cora restaurant

(c) Precision

linkage and (c): six variations of

showed comparable results on cora data set achieving about
0.9 accuracy. On the other hand, on dblp, the 4-bit scheme
performed slightly better than 2-bit achieving 0.94 as pre-
cision while the 1-bit scheme was the worst achieving only
0.78 as precision. The performance degradation of the lossy
coding schemas are data set dependent while execution time
saving is evident.

4.4 Comparison among BLASTed Linkages

In Figure 6(c), we compared six variations of BLASTed
linkage method using three data sets. In the graph, de-
fault(4) represents default BLASTed linkage methods with
4-bit coding scheme. And, hybrid (4; W*100) refers hybrid
BLASTed linkage method with 4-bit coding scheme and an
importance weight, which is the original weight of a token
multiplied by 100. Multi-bit (0.25, 0.75) represents multi-
bit BLASTed linkage method with a lower cutoff value 0.25
and a higher cutoff value 0.75. The third variant “weighted
BL with word group” refers to the application of weighted
BLASTed linkage after we coalesce similar words (e.g., ty-
pos) into groups using JaroWinkler method.

For cora data set, all methods, except the “weighted BL
with word group”, perform well, above the precision of 0.9.
The hybrid BLASTed linkage methods with 2-bit coding
scheme and an importance weight of the original weight
multiplied by 100 outperforms other methods. The real
data/error of restaurant data set, weighted BLASTed link-
age shows the best precision. Because the data set has high
chance that a large portion of the tokens in two records are
common, weighted BLASTed linkage methods improves the
precision of default BLASTed linkage method as considering
word weight. Finally, for the synthetic data set dblp, de-
fault BLASTed linkage methods outperform the rest. It is

Time (hours)
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Figure 7: (a) Comparison among four variations of hybrid BLASTed linkage methods using five data sets.
(b) Comparison between multi-bit BLASTed linkage methods with two cutoff parameters using five data sets.
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interesting that the precision of weighted BLASTed linkage
method, the best method for restaurant data set, is very
low due to typographical errors introduced in the data set.

Overall, there is no clear winner across three data sets as
inferring that each BLASTed linkage method performs dif-
ferently depending on the characteristics of each data set,
such as the number of tokens shared in different records and
types/degrees of errors in the data set. Multi-bit BLASTed
linkage method does not outperform other BLASTed link-
age methods in all data sets, however it seems to provide
robust performance in overall. The performance of hybrid
and weighted BLASTed linkage with word group is rela-
tively consistent. Also, it seems that Default and weighted
BLASTed linkage methods are affected by the characteris-
tics of a data set the most.

4.5 Hybrid vs. Multi-bit BLASTed linkage

As shown in Figure 7, the performance of hybrid BLASTed
linkage method is tested on five data sets as using six com-
binations of different bit coding schemes and types of im-
portance weight. Either of a token weight or a token rank
is used as importance weight for each token. The original
token weight is multiplied by either of 100 or 10,000 before
the weight is translated to DNA sequence. As multiplying
larger value, we can increase the proportion of weight in-
formation in DNA sequence of a records. Also, as using
larger number-bit scoring scheme, the proportion of lexical
meaning information of each token is increased.

With the fixed importance weight, hybrid BLASTed link-
age methods with 4-bit coding scheme outperforms the meth-
ods with 2-bit coding schemes in dbgenl and dblp. How-
ever, the result is the opposite in cora and restaurant data
sets. In celebrity data set, different coding schemes almost
does not affect the performance of hybrid BLASTed linkage.
Next, given the same bit coding scheme, hybrid BLASTed
linkage method with smaller importance weight shows better
precision than that with larger importance weight in all data
sets except for restaurant data set. Different importance
weight does not change the performance of hybrid BLASTed
linkage methods in restaurant data set.

Overall, hybrid BLASTed linkage method with larger number-

bit coding scheme and smaller importance weight works bet-
ter than other methods in both of dbgenl and dblp. For
celebrity data set, hybrid BLASTed linkage with largest

importance weight show better precision. Contrast to celebrity

data set, which bit coding scheme is used is more important
in restaurant data set and hybrid BLASTed linkage smaller

value bit coding scheme outperforms that with larger value
bit coding scheme. For cora data set, it is better to use hy-
brid BLASTed linkage with smaller value bit coding scheme
and smaller importance weight.

To see the effect of different cutoff values for multi-bit
BLASTed linkage method, two different cutoff values, such
as (0.25, 0.75) and (0.4, 0.6), are used. Figure 7 shows the
result of the two variations using five data sets. We cannot
conclude that which variation clearly outperform the other.
It is possible that optimal cutoff values for selection criterion
of bit coding schemes on tokens with different weights may
depend on data sets.

4.6 Discussion

In this section, we will discuss about variations of BLASTed
linkage method to answer the following questions: (1) Which
variation of BLASTed linkage method would work optimal
on the data set with particular characteristics? (2) Which
variation of BLASTed linkage method performs consistently
in overall?

Default BLASTed linkage method performs consistently
well on the data sets with both of low and high error rate,
except for the data sets with many records sharing com-
mon tokens as much as a significant portion of the entire
records. On the other hands, weighted BLASTed linkage
method performs well with such data sets, as well as those
with low error rate. For the data sets with relatively high er-
ror and the records sharing many common tokens, either of
hybrid and multi-bit BLASTed linkage methods would work
well. For the data set with high error rate, hybrid BLASTed
linkage method with 4-bit coding scheme and small impor-
tance weight performs better than hybrid method with 2-bit
coding scheme and large importance weight. However, for
the data set with low error rate, hybrid method with 2-bit
coding scheme and large importance weight outperforms.
Multi-bit BLASTed linkage method seems perform consis-
tently well for all kinds of data sets. It is true that we still
need to decide the proper cutoff values for selection crite-
rion of bit coding schemes, but the performance of multi-bit
BLASTed linkage method does not change much with rea-
sonable cutoff values as shown in figure 7(b).

The precision-recall graph in figure 7(c) is generated with
precision and recall of three variations of BLASTed linkage
methods as increasing k, which is the number of answers
returned (e.g. top-k answers). With respect to recall, pre-
cision of default and hybrid BLASTed linkage methods is
changed as following very similar curve. As recall is in-



creased, precision of multi-bit BLASTed linkage method is
dropped faster than default and hybrid BLASTed linkage
methods. However, the difference is not significant. Care-
fully selected BLASTed linkage method which is suitable for
a certain data set can guarantee better performance on the
data set. Either of hybrid and multi-bit BLASTed linkage
methods perform robust for any kind of data sets despite.

S. RELATED WORK

The general linkage problem has been known as various
names — record linkage (e.g., [7, 3]), identity uncertainty

(e.g., [16]), merge-purge (e.g., [9]), citation matching (e.g., [15]),

object matching (e.g., [4]), entity resolution (e.g., [18]), au-

thority control (e.g., [21]), and approximate string join (e.g., [8,

4]) etc. Readers are referred to excellent survey papers (e.g.,
[22, 6]) for the latest development of the linkage problem. To
our best knowledge, none of these existing works attempted
to solve the linkage problem using bioinformatics framework
as we did it using BLAST. In terms of distance measures to
use in comparing records, Cohen et al. [5] have compared
the efficacy of various string-distance metrics including Jaro
and Jaro-Winkler. [15] conducted an in-depth study on the
blocking issue of the linkage problem in digital library con-
text. On the other hand, in terms of scalability issue, people
have proposed the blocking technique [11], computationally
efficient distance function [14], or parallel linkage [12].

To our best knowledge, there have been very few attempts
to use BLAST for applications outside of gene sequence
alignment. First, [2] borrows the idea of multiple sequence
alignment from BLAST in building a mapping dictionary,
that is a lexicon of elementary semantic expressions and cor-
responding natural language realizations. Second, [13}8 uses
BLAST to detect gene and protein names from journal arti-
cles by viewing an entire article as a query sequence and a set
of known gene and protein terms as a database of sequences
to match. Finally, [10] employs BLAST in the citation field
segmentation problem — i.e., split a unsegmented citation
string into known set of fields such as author, title, venue,
and year. In the same sprit of these works but for the first
time, we propose to use BLAST to solve the linkage prob-
lem. Moreover, we devise/evaluate four effective variations
to transform regular string data to DNA sequences.

6. CONCLUSION AND FUTURE WORK

In this paper, we have presented the novel idea of applying
BLAST, one of the most popular sequence alignment algo-
rithms in Bioinformatics, to the (record) linkage problem.
To handle various cases of the linkage problem, we proposed
four variations of the BLAST based linkage schemes, and
show their efficacy using both real and synthetic data sets.
Overall, our proposed BLAST based schemes show promis-
ing results with good combination of accuracy and speed,
compared to conventional string matching methods such as
Jaro, Jaccard, and Soft TFIDF. Since BLAST has a wealth
of supporting algorithms, implementations, and tools in its
user community, our proposal enables users of the linkage
problem to have an immediate access to rich resources.

Many directions are ahead. First, in this paper, we only
focused on exploiting the basic version of BLAST for the

8To our best knowledge, [13] is the first article, mention-
ing the idea of transforming an English alphabet to DNA
sequences of A, C, G, and T.

linkage problem. Applying the very same idea using more
recent and advanced BLAST versions (e.g., PSI-BLAST,
MegaBLAST) is an interesting extension to try. Second,
many domain-specific linkage solutions have been proposed.
Comparing the performance of our BLASTed linkage schemes
against other state-of-the-art (but less generic) solutions would
be able to help improve the weakness of our ideas further.
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